Гелий-неоновые лазеры (He-Ne-лазеры)

 

Схема энергетических уровней.

Возбуждение.

Длины волн.

Конструктивное исполнение.

Свойства пучка.

 

Гелий-неоновый лазер - наряду с диодным или полупроводниковым - относится к числу наиболее часто используемых и самых приемлемых по цене лазеров для видимой области спектра. Мощность лазерных систем такого рода, предназначенных, в основном, для коммерческих целей, находится в диапазоне от 1 мВт до нескольких десятков мВт. Особенно популярны не столь мощные He-Ne-лазеры порядка 1 мВт, которые используют, главным образом, в качестве котировочных устройств, а также для решения иных задач в сфере измерительной техники. В инфракрасном и красном диапазонах гелий-неоновый лазер все чаще вытесняется диодным лазером. He-Ne-лазеры способны, наряду с красными линиями, излучать также оранжевые, желтые и зеленые, что достигается благодаря соответствующим селективным зеркалам.

 

Схема энергетических уровней

Важнейшие для функции He-Ne-лазеров энергетические уровни гелия и неона представлены на рис. 1. Лазерные переходы осуществляются в атоме неона, причем самые интенсивные линии получаются в результате переходов с длиной волн 633, 1153 и 3391 (см. таблицу 1).

Электронная конфигурация неона в основном состоянии выглядит так: 1s22s22p6 причем первая оболочка (n = 1) и вторая оболочка (n = 2) заполнены соответственно двумя и восемью электронами. Более высокие состояния по рис. 1 возникают в результате того, что здесь имеется 1s22s22p5-оболочка, и светящийся (оптический) электрон возбуждается согласно схеме: 3s, 4s, 5s,..., Зр, 4р,... и т.д. Речь идет, следовательно, об одноэлектронном состоянии, осуществляющим связь с оболочкой. В схеме LS (Рассела - Саундерса) для энергетических уровней неона указано одно-электронное состояние (например, 5s), а также результирующий полный орбитальный момент L (= S, Р, Д...). В обозначениях S, Р, D,... нижний индекс показывает полный орбитальный момент J, а верхний - мультиплетность 2S + 1, например, 5s1P1. Нередко используется чисто феноменологическое обозначение по Пашену (рис. 1). При этом счет подуровней возбужденных электронных состояний ведется от 2 до 5 (для s-состояний) и от 1 до 10 (для p-состояний).

Рис. 1. Схема энергетических уровней He-Ne-лазера. У неона уровни обозначены по Пашену, то есть: 3s2, 3s3, 3s4, 3s5 и т.д.

 

Таблица 1. Обозначения переходов интенсивных линий He-Ne-лазера

Схема связи LS Обозначение по Пашену Длины Волн
5s1P1 → 4p3P2 3s2 → 3p4 3.391 мкм (инфракрасный диапазон)
4s1P1 → 3p3P2 2s2 → 2p4 1.153 мкм (инфракрасный диапазон)
5s1P1 → 3p3P2 2s2 → 2p4 0.633 мкм (красный диапазон)

 

Возбуждение

Активная среда гелий-неонового лазера представляет собой газовую смесь, к которой в электрическом разряде подается необходимая энергия. Верхние лазерные уровни (2s и 2р по Пашену) избирательно заселяются на основе столкновений с метастабильными атомами гелия (23S1, 21S0). При этих столкновениях происходит не только обмен кинетической энергией, но и передача энергии возбужденных атомов гелия атомам неона. Этот процесс называют столкновением второго рода:

Не* + Ne -> Не + Ne* + ΔЕ,   (1)

где звездочка (*) символизирует именно возбужденное состояние. Разность энергий составляет в случае возбуждения 2s-уровня: &DeltaE=0,05 эВ. При столкновении имеющаяся разность преобразуется в кинетическую энергию, которая затем распределяется в виде тепла. Для 3s-уровня имеют место идентичные отношения. Такая резонансная передача энергии от гелия к неону и есть основной процесс накачки при создании инверсии населенностей. При этом долгое время жизни метастабильного состояния Не благоприятно сказывается на селективности заселения верхнего лазерного уровня.

Возбуждение He-атомов происходит на основе соударения электронов - либо непосредственно, либо через дополнительные каскадные переходы из вышележащих уровней. Благодаря долгоживущим метастабильным состояниям плотность атомов гелия в этих состояниях весьма велика. Верхние лазерные уровни 2s и 3s могут - с учетом правил отбора для электрических доплеровских переходов - переходить только в нижележащие р-уровни. Для успешного генерирования лазерного излучения крайне важно, что время жизни s-состояний (верхний лазерный уровень) = примерно 100 нc, превышает время жизни р-состояний (нижний лазерный уровень) = 10 нc.

 

Длины волн

Далее мы более детально рассмотрим важнейшие лазерные переходы, используя рис. 1 и данные из таблицы 1. Самая известная линия в красной области спектра (0,63 мкм) возникает вследствие перехода 3s2 → 2р4. Нижний уровень расщепляется в результате спонтанного излучения в течение 10 нс в 1s-уровень (рис. 1). Последний устойчив к расщеплению благодаря электрическому дипольному излучению, так что для него характерна долгая естественная жизнь. Поэтому атомы концентрируются в данном состоянии, которое оказывается высоконаселенным. В газовом разряде атомы в таком состоянии сталкиваются с электронами, и тогда вновь происходит возбуждение 2р- и 3s-уровней. При этом уменьшается инверсия населенностей, что ограничивает мощность лазера. Опустошение ls-состояния осуществляется в гелий-неоновых лазерах преимущественно из-за столкновений со стенкой газоразрядной трубки, в связи с чем при увеличении диаметра трубки отмечается снижение усиления и понижение кпд. Поэтому на практике диаметр ограничивается примерно 1 мм, что, в свою очередь, приводит к ограничению выходной мощности He-Ne-лазеров несколькими десятками мВт.

Участвующие в лазерном переходе электронные конфигурации 2s, 3s, 2р и Зр расщепляются в многочисленные подуровни. Это приводит, например, к дальнейшим переходам в видимой области спектра, как видно из таблицы 2. При всех видимых линиях He-Ne-лазера квантовая эффективность составляет порядка 10 %, что не так уж много. Схема уровней (рис. 1) показывает, что верхние лазерные уровни располагаются примерно на 20 эВ выше основного состояния. Энергия же красного лазерного излучения составляет всего 2 эВ.

 

Таблица 2. Длины волн λ, выходные мощности и ширина линий Δ ƒ He-Ne-лазера (обозначения переходов по Пашену)

Цвет λ
нм
Переход
(по Пашену)
Мощность
мВт
Δ ƒ
МГц
Усиление
%/м
Инфракрасный 3 391 3s2 → 3p4 > 10 280 10 000
Инфракрасный 1 523 2s2 → 2p1 1 625  
Инфракрасный 1 153 2s2 → 2p4 1 825  
Красный 640 3s2 → 2p2      
Красный 635 3s2 → 2p3      
Красный 633 3s2 → 2p4 > 10 1500 10
Красный 629 3s2 → 2p5      
Оранжевый 612 3s2 → 2p6 1 1 550 1.7
Оранжевый 604 3s2 → 2p7      
Желтый 594 3s2 → 2p8 1 1 600 0.5
Желтый 543 3s2 → 2p10 1 1 750 0.5

 

Излучение в инфракрасном диапазоне около 1,157 мкм возникает посредством переходов 2s → 2р. То же самое относится к несколько более слабой линии примерно 1,512 мкм. Обе эти инфракрасных линии находят применение в лазерах коммерческого назначения.

Характерной особенностью линии в ИК-диапазоне при 3,391 мкм является высокое усиление. В зоне слабых сигналов, то есть при однократном прохождении слабых световых сигналов, оно составляет порядка 20 дБ/м. Это соответствует коэффициенту 100 для лазера длиной в 1 метр. Верхний лазерный уровень такой же, как и при известном красном переходе (0,63 мкм). Высокое усиление, с одной стороны, вызвано крайне коротким временем жизни на нижнем 3p-уровне. С другой стороны, это объясняется относительно большой длиной волны и, соответственно, низкой частотой излучения. Обычно соотношение вынужденного и спонтанного излучений увеличивается для низких частот ƒ. Усиление слабых сигналов g, как правило, пропорционально g ~ƒ2.

Без селективных элементов излучение гелий-неонового лазера происходило бы на линии 3,39 мкм, а не в красной области при 0,63 мкм. Возбуждению инфракрасной линии препятствует либо селективное зеркало резонатора, либо поглощение в брюстеровских окнах газоразрядной трубки. Благодаря этому порог генерации лазера может повыситься до уровня, достаточного для излучения 3,39 мкм, так что здесь появляется только более слабая красная линия.

Конструктивное исполнение

Необходимые для возбуждения электроны образуются в газовом разряде (рис.2), который может использоваться с напряжением около 12 кВ при токах от 5 до 10 мА. Типичная длина разряда равна 10см или более, диаметр разрядных капилляров составляет порядка 1 мм и соответствует диаметру излученного лазерного пучка. При увеличении диаметра газоразрядной трубки коэффициент полезного действия понижается, так как для опустошения ls-уровня требуются столкновения со стенкой трубки. Для оптимальной выходной мощности используется полное давление (р) заполнения: р·D = 500 Па·мм, где D есть диаметр трубки. Соотношение в смеси He/Ne зависит от желаемой линии лазерного излучения. Для известной красной линии имеем Не: Ne = 5:l, а для инфракрасной линии около 1,15 мкм - He:Ne=10:l. Важным аспектом представляется также оптимизация плотности тока. Коэффициент полезного действия для линии 633 нм составляет около 0,1 %, поскольку процесс возбуждения в данном случае не слишком эффективен. Срок службы гелий-неонового лазера составляет порядка 20 000 рабочих часов.

Рис. 2. Конструктивное исполнение He-Ne-лазера для поляризованного излучения в мВт-диапазоне

 

Усиление при таких условиях находится на уровне g=0,1 м-1, так что необходимо использовать зеркала с высокой отражательной способностью. Для выхода лазерного пучка только с одной стороны там устанавливают частично пропускающее (полупрозрачное) зеркало (например, с R = 98 %), а на другой стороне - зеркало с максимально высокой отражательной способностью (~ 100 %). Усиление для других видимых переходов значительно меньше (см. таблицу 2). Для коммерческих целей эти линии удалось получить только в последние годы с помощью зеркал, отличающихся чрезвычайно малыми потерями.

Ранее у гелий-неонового лазера выходные окна газоразрядной трубки фиксировались эпоксидной смолой, а зеркала монтировались снаружи. Это приводило к тому, что гелий диффундировал через клей, и в лазер попадал водяной пар. Сегодня эти окна крепятся методом прямого спая металла со стеклом, что дает снижение утечки гелия примерно до 1 Па в год. В случае небольших лазеров массового производства зеркальное покрытие наносится непосредственно на выходные окна, что значительно упрощает всю конструкцию.

 

Свойства пучка

Для выбора направления поляризации газоразрядная лампа снабжается двумя наклонно расположенными окнами или, как показано на рис. 2, в резонатор вставляется брюстеровская пластина. Отражательная способность на оптической поверхности обращается в нуль, если свет падает под так называемым углом Брюстера и поляризован параллельно плоскости падения. Таким образом, излучение с таким направлением поляризации без потерь проходит через брюстеровское окно. В то же время отражательная способность компоненты, поляризованной перпендикулярно плоскости падения, достаточно высока и подавляется в лазере.

Коэффициент (степень) поляризации (отношение мощности в направлении поляризации к мощности перпендикулярно этому направлению) составляет у обычных коммерческих систем 1000:1. При работе лазера без брюстеровских пластин с внутренними зеркалами генерируется неполяризованное излучение.

Лазер генерирует обычно на поперечной ТЕМ00-моде (моде низшего порядка), причем образуется сразу несколько продольных (аксиальных) мод. При расстоянии между зеркалами (длине резонатора лазера) L = 30 см межмодовый частотный интервал составляет Δ ƒ` = c/2L = 500 МГц. Центральная частота находится на уровне 4,7·1014 Гц. Поскольку усиление света может произойти в пределах диапазона Δ ƒ = 1500 МГц (доплеровская ширина), при L = 30CM излучается три разных частоты: Δ ƒ/Δ ƒ`= 3. При использовании меньшего расстояния между зеркалами (<= 10см) может быть получена одночастотная генерация. При короткой длине мощность будет весьма незначительной. Если требуется одночастотная генерация и более высокая мощность, можно использовать лазер большей длины и с оснащением частотно-селективными элементами.

Гелий-неоновые лазеры около 10 мВт часто находят применение в интерферометрии или голографии. Длина когерентности подобных лазеров серийного производства составляет от 20 до 30см, что вполне достаточно для голографии небольших объектов. Более значительные длины когерентности получаются при использовании серийных частотно-селективных элементов.

При изменении оптического расстояния между зеркалами в результате теплового или иного воздействия происходит сдвиг аксиальных собственных частот резонатора лазера. При одночастотной генерации здесь не получается стабильной частоты излучения - она бесконтрольно перемещается в диапазоне ширины линии 1500 МГц. Путем дополнительного электронного регулирования может быть достигнута стабилизация частоты как раз по центру линии (у коммерческих систем возможна стабильность частоты в несколько МГц). В исследовательских лабораториях удается иногда стабилизировать гелий-неоновый лазер на диапазон менее 1 Гц.

Путем использования подходящих зеркал разные линии из таблицы 4.2 могут возбуждаться для генерации лазерного излучения. Чаще всего находит применение видимая линия около 633 нм с типовыми мощностями в несколько милливатт. После подавления интенсивной лазерной линии порядка 633 нм благодаря использованию селективных зеркал или призм в резонаторе могут появиться другие линии в видимом диапазоне (см. таблицу 2). Однако выходные мощности этих линий составляют всего 10 % от выходной мощности интенсивной линии или даже меньше.

Гелий-неоновые лазеры коммерческого назначения предлагаются с разными длинами волн. Помимо них имеются еще лазеры, генерирующие на многих линиях и способные излучать волны множества длин в самых разных комбинациях. В случае перестраиваемых He-Ne-лазеров предлагается, поворачивая призму, выбрать требуемую длину волны.

 

 

В начало >>>